More than 500 years ago, Leonardo da Vinci sketched what he called “la turbolenza,” comparing chaotic swirls atop flowing water to curly human hair. It turns out those patterns influence myriad phenomena, from the drag on an airplane’s wings and the formation of Jupiter’s red spot to the rustling of tree leaves.
New findings to be published Friday in the journal Science add another to the list: the eradication of a pervasive fertilizer pollutant from streams.
“We can now calculate a turbulence ‘speed limit’ for nitrate removal in any stream,” said lead author Stanley Grant, a professor of civil & environmental engineering at the University of California, Irvine. “That means we can provide specific guidance on how to tailor restoration efforts to maximize its removal and protect ecosystems downstream.”
Continue reading at University of California Irvine
Image via Morvarid Azizian, University of California Irvine