Researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have discovered that as plants develop they craft their root microbiome, favoring microbes that consume very specific metabolites. Their study could help scientists identify ways to enhance the soil microbiome for improved carbon storage and plant productivity.
“For more than a century, it’s been known that plants influence the makeup of their soil microbiome, in part through the release of metabolites into the soil surrounding their roots,” said Berkeley Lab postdoctoral researcher Kateryna Zhalnina, the study’s lead author. “Until now, however, it was not understood whether the contents of this cocktail released by plants was matched by the feeding preferences of soil microbes in a way that would allow plants to guide the development of their external microbiome.”
The study, “Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly,” has just been published in the journal Nature Microbiology. The corresponding authors were Berkeley Lab scientists Trent Northen and Eoin Brodie.
Microbes within soil improve the ability of plants to absorb nutrients and resist drought, disease, and pests. They mediate soil carbon conversion, affecting the amount of carbon stored in soil or released into the atmosphere as carbon dioxide. The relevance of these functions to agriculture and climate are being observed like never before.
Read more at DOE/Lawrence Berkeley National Laboratory
Image: Rhizosphere soil for microbial isolations was collected from the Little Buck watershed at the University of California Hopland Research and Extension Center in an area in which Avena barbata are the dominant vegetation. (Credit: Heejung Cho)