A team of researchers from MIPT and their German and Japanese colleagues have designed a numerical model of the annual water cycle in the Martian atmosphere. Previously, the scientists focused their research on relatively large airborne dust particles that serve as water condensation nuclei on Mars. In this study, the MIPT team expanded the analysis to include smaller particles that are more elusive. As a result, the calculations turned out to be more accurate and consistent with the data obtained from Mars orbiters. The paper was published in the Journal of Geophysical Research: Planets.
Alexander Rodin, the head of the Laboratory of Applied Infrared Spectroscopy at MIPT, comments: “Our model describes the 3-D motions of the air masses on Mars, solar and infrared radiation transfer, phase transitions of water, and the microphysics of Martian clouds, which is pivotal to the planet’s hydrological circulation.”
There is not much water on the red planet, especially in its rarefied cold atmosphere. If we were to collect all the atmospheric water and spread it evenly on the planet’s surface, the layer would be only 20 microns thick. Although water is present on Mars in such a low concentration, it has a major impact on the planet’s climate. For instance, clouds scatter and re-emit incident infrared radiation, and ice condensed on aerosol particles removes dust from the atmosphere. That is why, in order to get a better understanding of the processes that take place on Mars, it is important to look into the ways in which water vapor and ice particles are transported and redistributed between the seasonal polar caps.
Read more at Moscow Institute of Physics and Technology