Biologists get a new look at plant biodiversity and function with new imaging technology developed at the University of Alberta.
“Biodiversity and ecosystem function are both changing with human disturbance and climate change, and our research provides a new tool for assessing these changes and renewed hope for improved environmental monitoring,” explained John Gamon, professor in the Departments of Earth and Atmospheric Sciences and Biological Sciences and co-author in the study. “The information derived from this technology provides a practical way to address biodiversity and ecosystem function over large landscapes.”
The method uses an imaging spectrometer, similar to a conventional camera but with a thousand colours, mounted on a moving robotic cart to measure the spectra of light reflected from plants in visible, near-infrared, and short-wave infrared regions to measure differences in plant traits. Differences in reflected radiation allow scientists to not only see more than what the naked eye allows, but also to sample both the functional diversity and evolutionary history of individual plants in the environment.
This work is of particular importance because, as was noted in a previous study, 2050 is expected to see a loss in world economic productivity as a result of global warming threatening one-fifth of vascular plant species. The technological advance presented in this study gives researchers a new tool to monitor biodiversity, combat these threats, and raise awareness of biodiversity importance.
Read more at University of Alberta
Image: An example of the type of images captured by the imaging spectrometer. By exploring the colours of light reflected by the plants, researchers are able to identify subtle differences in plant function. Red represents sun induced fluorescence, green is chlorophyll content, and blue is the photochemical reflectance index, indicating plant stress and highlighting differences in photosynthetic performance (Credit: Ran Wang)