Princeton researchers have developed a new computational method that increases the ability to track the spread of cancer cells from one part of the body to another.
This migration of cells can lead to metastatic disease, which causes about 90 percent of cancer deaths from solid tumors — masses of cells that grow in organs such as the breast, prostate or colon. Understanding the drivers of metastasis could lead to new treatments aimed at blocking the process of cancer spreading through the body.
“Are there specific changes, or mutations, within these cells that allow them to migrate?” asked Ben Raphael, a professor of computer science at Princeton and the senior author of the new research. “This has been one of the big mysteries.”
In a study published in the May issue of Nature Genetics, Raphael and his colleagues presented an algorithm that can track cancer metastasis by integrating DNA sequence data with information on where cells are located in the body. They call it MACHINA, which stands for “metastatic and clonal history integrative analysis.”
“Our algorithm enables researchers to infer the past process of metastasis from DNA sequence data obtained at the present time,” said Raphael.
Read more at Princeton University - Engineering School