The 2014 megafires in Canada's Northwest Territories burned 7 million acres of forest, making it one of the most severe fire events in Canadian history.
A new study shows that as those fires scorched a region of boreal forest the size of Maryland, they released half as much carbon back into the atmosphere as all the plants, shrubs and trees in Canada typically store in an entire year.
The Arctic is warming faster than any other region on Earth, and as it does, environmental scientists expect large fires to increase in frequency and intensity. But they have struggled to understand these fires’ effect on ecosystems and ultimately carbon dioxide levels in the atmosphere. Carbon dioxide is a greenhouse gas, meaning that it helps trap heat in the Earth’s lower atmosphere. More carbon dioxide in the atmosphere means more trapped heat, causing global temperatures to rise.
The megafires paper is one of two recently released studies based on data from NASA’s Arctic Boreal Vulnerability Experiment, or ABoVE, that will help scientists better understand and predict both short- and long-term changes in the ecosystems of Alaska and Northern Canada.
The authors of the megafires paper constructed models to help them understand what made the 2014 fires so large and what impact they had on the environment. The authors of the second study used images from the NASA and U.S. Geological Survey (USGS) Landsat program to not only observe changes in Alaska’s environment, but determine their causes and potential future effects.
Read more at NASA/Goddard Space Flight Center
Image: In 2014, megafires in Canada's Northwest Territories scorched more than 7 million acres of forest, releasing half as much carbon back into the atmosphere as all the plants and trees in Canada typically absorb in an entire year. (Credit:NASA/Peter Griffith)