A research team led by DGIST Professor Jong-Sung Yu’s team at the Department of Energy Science and Engineering has successfully developed a new catalyst synthesis method that can efficiently decompose water into oxygen and hydrogen using solar light. It is expected that this method will facilitate hydrogen mass production due to higher efficiency than the existing photocatalyst method.
Due to the intensifying environmental problems such as air pollution and global warming caused by the increased use of fossil energy, hydrogen is recently drawing attention as an ecofriendly energy source of next generation. Accordingly, research is being conducted globally on how to produce hydrogen using solar light and photocatalyst by decomposing water.
To overcome the limitations of photocatalyst that only reacts to light in ultraviolet rays, researchers have doped dual atom such as Nitrogen (N), Sulfur (S), and Phosphorus (P) on photocatalyst or synthesized new photocatalysts, developing a photocatalyst that reacts efficiently to visible light.
With Professor Samuel Mao’s team at UC Berkeley in the U.S., Professor Yu’s research team developed a new H-doped photocatalyst by removing oxygen from the photocatalyst surface made of titanium dioxide and filling hydrogen into it through the decomposition of MgH2.
Read more at DGIST (Daegu Gyeongbuk Institute of Science and Technology)
Image: DGIST Professor Jong-Sung Yu at the Department of Energy Science and Engineering. (Credit: Daegu Gyeongbuk Institute of Science and Technology (DGIST))