Deadly severe wildfires in California have scientists scrutinizing the underlying factors that could influence future extreme events. Using climate simulations and paleoclimate data dating back to the 16th century, a recent study looks closely at long-term upper-level wind and related moisture patterns to find clues.
The new research published by the Proceedings of the National Academy of Sciences USA examines jet stream and moisture patterns in California over a centuries-long time period—1571 to 2013—which is nearly four times longer than the instrumental period of record that begins in the latter part of the 19th century. The length of the study enhances the understanding of dynamics that may contribute to extreme impacts from wildfires, as well as precipitation extremes. The work provides a stronger foundation and a longer-term perspective for evaluating regional natural hazards within California and the economic risks to one of the world's largest economies.
Between 2012 and 2018, several deadly and costly extreme wildfire events impacted California, including some of the state’s largest and most destructive wildfires on record. In 2018, California experienced several of its costliest, deadliest, and largest wildfires to date, according to records that date back to 1933. Such extreme events, which are tracked by NCEI in its Billion-Dollar Weather and Climate Disasters reports, prompt concern for the future.
Read more at NOAA
Photo: Courtesy of Carl Skinner, U.S. Forest Service