There could be new treatments on the horizon for diffuse intrinsic pontine glioma, or DIPG, a devastating form of brain cancer that afflicts young children and is currently incurable. Recent experiments in animal models of the disease have identified an experimental drug that effectively destroys DIPG cells. And a team of Rockefeller scientists just figured out how this promising compound works.
The research, described in Proceedings of the National Academy of Sciences, shows that the drug acts on cellular cholesterol pathways, and suggests that these pathways may be fruitful targets for treating a variety of brain cancers.
Targeting tumors
DIPG tumors are located in the pons, a highly sensitive structure that connects the brain to the spinal cord. Surgical removal of tumors is effectively impossible since it poses the risk of fatal brain damage. And although radiation can be used to temporarily reduce symptoms, the cancer inevitably grows, with an average survival rate of less than one year. Which is to say: there is a pressing need for new ways to treat children with the disease.
Read more at Rockefeller University
Image: DIPG cells, pictured here, are generally resilient and replicate rapidly. With a dose of MI-2, however, the cells abruptly die. CREDIT: Rockefeller University / C. David Allis