Books can burn. Computers get hacked. DVDs degrade. Technologies to store information—ink on paper, computers, CDs and DVDs, and even DNA—continue to improve. And yet, threats as simple as water and as complex as cyber-attacks can still corrupt our records.
As the data boom continues to boom, more and more information gets filed in less and less space. Even the cloud—whose name promises opaque, endless space—will eventually run out of space, can’t thwart all hackers, and gobbles up energy. Now, a new way to store information could stably house data for millions of years, lives outside the hackable internet, and, once written, uses no energy. All you need is a chemist, some cheap molecules, and your precious information.
“Think storing the contents of the New York Public Library with a teaspoon of protein,” says Brian Cafferty, first author on the paper that describes the new technique and a postdoctoral scholar in the lab of George Whitesides, the Woodford L. and Ann A. Flowers University Professor at Harvard University. The work was performed in collaboration with Milan Mrksich and his group at Northwestern University and is published in ACS Central Science.
“At least at this stage, we do not see this method competing with existing methods of data storage,” Cafferty says. “We instead see it as complementary to those technologies and, as an initial objective, well suited for long-term archival data storage.”
Read more at Harvard University
Photo Credit: jarmoluk via Pixabay