Engineers at the University of California San Diego have developed a high-throughput computational method to design new materials for next generation solar cells and LEDs. Their approach generated 13 new material candidates for solar cells and 23 new candidates for LEDs. Calculations predicted that these materials, called hybrid halide semiconductors, would be stable and exhibit excellent optoelectronic properties.
The team published their findings on May 22, 2019 in the journal Energy & Environmental Science.
Hybrid halide semiconductors are materials that consist of an inorganic framework housing organic cation. They show unique material properties that are not found in organic or inorganic materials alone.
A subclass of these materials, called hybrid halide perovskites, have attracted a lot of attention as promising materials for next generation solar cells and LED devices because of their exceptional optoelectronic properties and inexpensive fabrication costs. However, hybrid perovskites are not very stable and contain lead, making them unsuitable for commercial devices.
Read more at University of California - San Diego