A team of researchers from UMass Lowell, the University of Illinois at Urbana-Champaign and China Agricultural University in Beijing has developed a new, sustainable way of converting wet biological waste into diesel-compatible fuel, using heat and water.
The process, called hydrothermal liquefaction (HTL), converts wet, solid biowaste – such as animal manure from farms, food scraps from restaurants and food-processing plants, and algae from wastewater treatment facilities – into liquid fuel that can be blended with regular diesel.
“This process is environmentally sustainable, and has the potential to augment the country’s energy production while reducing greenhouse gas emission,” says UML Plastics Engineering Asst. Prof. Wan-Ting (Grace) Chen, who is a member of the team.
Each year, the United States produces nearly 80 million tons of wet biowaste. Worldwide, the amount of biowaste produced is expected to climb due to urbanization, industrialization and population growth.
“The World Bank has projected a 70 percent global increase in urban waste and an 83 percent increase in disposal cost by 2025, based on current waste-disposal technologies such as incineration and landfilling,” notes Chen. “Finding an effective means of repurposing biowaste into a resource is key for a sustainable future.”
Read more at University of Massachusetts Lowell