Medical advancements can come at a physical cost. Often following diagnosis and treatment for cancer and other diseases, patients’ organs and cells can remain healed but damaged from the medical condition.
In fact, one of the fastest growing medical markets is healing and/or replacing organs and cells already treated, yet that remain damaged by cancer, cardiovascular disease and other medical issues. The global tissue engineering market is expected to reach $11.5 billion by 2022. That market involves researchers and medical scientists working to repair tissues damaged by some of the world’s most debilitating cancers and diseases.
One big challenge remains for the market: how to monitor and continuously test the performance of engineered tissues and cells to replace damaged ones. Purdue University researchers have come up with a 3D mapping technology to monitor and track the behavior of the engineered cells and tissues and improve the success rate for patients who have already faced a debilitating disease. The technology is published in the June 19 edition of ACS Nano.
“My hope is to help millions of people in need,” said Chi Hwan Lee, an assistant professor of biomedical engineering and mechanical engineering in Purdue’s College of Engineering, who leads the research team. “Tissue engineering already provides new hope for hard-to-treat disorders, and our technology brings even more possibilities.”
Read more at Purdue University