Combining novel theoretical and experimental approaches, researchers from the University of Michigan (USA), Kookmin University (South Korea), the University of Konstanz (Germany) and the Okinawa Institute of Science and Technology Graduate University (Japan) have successfully measured and described the thermal conductance of single-molecule junctions – a key quantity in nanoscale transport phenomena that has so far eluded direct experimental determination. A joint paper entitled “Thermal Conductance of Single-Molecule Junctions” has been published online in the journal Nature on 17 July 2019.

“The control of heat transport at the molecular scale is a key factor in the development of nanostructured materials and technologies such as molecular electronics, thermally conductive polymers and thermoelectric energy-conversion devices”, explains Associate Professor Fabian Pauly, a theoretical condensed matter physicist and the leader of the Quantum Transport and Electronic Structure Theory Unit at Okinawa Institute of Science and Technology Graduate University. Fabian Pauly, who is also a Principal Investigator at the University of Konstanz’s Collaborative Research Centre 767 “Controlled Nanosystems: Interaction and Interfacing to the Macroscale”, contributed the theoretical models to the experimental breakthrough.

Read more at University of Konstanz

Illustration of the experimental setup to measure the heat flow through a single molecule. | Copyright: Jan C. Klöckner