Most of the times you see the eruption of a volcano on TV or the internet, the magma shoots right out of its top. However, it is not so uncommon that the magma erupts from the volcano’s flank rather than its summit. After leaving the underground magma chamber, the magma forces its way sideways by fracturing rock, sometimes for tens of kilometres. Then, when it breaches the Earth’s surface, it forms one or more vents from which it spills out, sometimes explosively. This for example occurred at Bárðarbunga in Iceland in August 2014, and Kīlauea in Hawaii in August 2018.
It is a big challenge for volcanologists to guess where magma is heading and where it will breach the surface. A lot of effort is spent on this task as it could help minimise the risk for villages and cities endangered by eruptions. Now, Eleonora Rivalta and her team from the GFZ German Research Centre for Geosciences in Potsdam, together with colleagues from the University Roma Tre and the Vesuvius Observatory of the Italian Istituto Nazionale di Geofisica e Vulcanologia in Naples have devised a new method to generate vent location forecasts. The study is published in the journal Science Advances.
“Previous methods were based on the statistics of the locations of past eruptions”, says Eleonora Rivalta. “Our method combines physics and statistics: we calculate the paths of least resistance for ascending magma and tune the model based on statistics.” The researchers successfully tested the new approach with data from the Campi Flegrei caldera in Italy, one of the Earth’s highest-risk volcanoes.
Read more at GFZ Geoforschungszentrum Potsdam, Helmholtz Centre
Image: Multiple volcanic craters cover the 'Campi Flegrei' near Naples, Italy. A new method aims at forecasting where new vents will occur. (Credit: Mauro Antonio di Vito / INGV)