Agriculture, forestry, and other types of land use account for 23% of human-caused greenhouse gas emissions, yet at the same time natural land processes absorb the equivalent of almost a third of carbon dioxide emissions from fossil fuels and industry, according to the International Panel on Climate Change, which issued the first-ever comprehensive report on land and climate interactions earlier this month. How long will the Amazon rainforest continue to act as an effective carbon sink?
An international team of scientists, including climate scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), investigated this question and found that accounting for phosphorus-deficient soils reduced projected carbon dioxide uptake by an average of 50% in the Amazon, compared to current estimates based on previous climate models that did not take into account phosphorus deficiency. The Amazon Basin is critical to help mitigate climate change due to its trees absorbing around a quarter of the CO2 released each year from the burning of fossil fuels.
The paper, “Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition,” was published August 5 in the journal Nature Geoscience.
Read more at DOE/Lawrence Berkeley National Laboratory
Image: View from the top of a measurement tower, where researchers monitor critical forest canopy processes such as photosynthesis, plant water fluxes, leaf characteristics, and growth. (Credit: Joao M. Rosa, AmazonFACE)