In the search for life beyond our galaxy, many scientists have their eyes turned toward orbs like Earth: rocky planets. So after the Transiting Exoplanet Survey Satellite (TESS) detected a rocky planet slightly larger than Earth last fall, a team of researchers launched a campaign to take additional images with the Spitzer Space Telescope, the only telescope currently in space that can directly detect a planet’s infrared light. The telescope produced pictures smaller than 1 pixel – 1/94 of an inch – like a speck of dust with which to make predictions about the planet’s habitability.
Looking at several orbits of the planet allowed scientists to map the temperature of its surface and create models of its atmosphere – capabilities that scientists are only just starting to develop for rocky planets. Much of what researchers learn about exoplanets is based on what they know about the stars they circle.
“People say we only know a planet as well as we know the star, because we’re basically inferring things based on what we’re measuring about the star,” said Laura Schaefer, an assistant professor of geological sciences at Stanford’s School of Earth Energy & Environmental Sciences (Stanford Earth) and co-author on a study characterizing a planet that was published in Nature Aug. 19.
Read more at Stanford University