How does ice form? Surprisingly, science hasn’t fully answered that question. Differences in ice formation on various surfaces still aren’t well understood, but researchers today will explain their finding that the arrangements that surface atoms impose on water molecules are the key. The work has implications for preventing ice formation where it isn’t wanted (windshields, power lines) and for promoting ice formation where it is (food or organ preservation). The results could also help improve weather prediction.

The researchers will present their findings today at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition. ACS, the world’s largest scientific society, is holding the meeting here through Thursday. It features more than 9,500 presentations on a wide range of science topics.

“We discovered that if we look at the liquid water structure where it contacts the surface, we can start to understand and predict whether a given surface will promote or inhibit ice formation,” says Sapna Sarupria, Ph.D., the project’s principal investigator. “We’re working with collaborators to use this information to better understand the role of ice in weather and to design surfaces that are good or bad for ice formation. Wouldn’t it be great to have a windshield that doesn’t let ice stick to it in winter?”

Sarupria’s team uses computers to study molecular simulations of surfaces and ice formation. Unlike the messier real world, this controlled setting gives her the ability to examine the impact of a change in just one surface parameter — or even just one atom — at a time. The researchers then correlate the findings with those of experimentalists who work with real-world materials, including silver iodide or minerals such as mica and kaolinite. Silver iodide is so effective at promoting ice formation that it’s used for cloud seeding to stimulate rainfall during droughts.

Read more at American Chemical Society

Photo credit: djedj via Pixabay