Biomedical engineers at Duke University have developed a new platform to create biologic drugs using specially engineered bacteria that burst and release useful proteins when they sense that their capsule is becoming too crowded.
The platform relies on two main components: the engineered bacteria, called “swarmbots,” that are programmed to sense the density of their peers within their container, and the biomaterial that confines the swarmbots, a porous capsule that can shrink in response to changes in the bacterial population. When it shrinks, the capsule squeezes out targeted proteins created by the captive bacteria.
This self-contained platform could make it easier for researchers to create, analyze and purify diverse biologics for use in small-scale biomanufacturing.
The research appeared online Sept. 16 in the journal Nature Chemical Biology.
Bacteria are commonly used to produce biologics, which are products like vaccines, gene therapies and proteins that are created or synthesized from biological sources. Currently, this process involves a series of sophisticated steps including cell culturing, protein isolation and protein purification, each of which requires delicate infrastructure to ensure efficiency and quality. For industrial operations, these steps are carried out on a large scale. While this helps produce large quantities of certain molecules, this setup is not flexible or financially viable when researchers need to produce small amounts of diverse biologics or work in resource-limited settings.
Read more at Duke University
Image Credit: Zhuojun Dai