Genetic research led by Queen Mary University of London could open the way to earlier identification of people at risk of heart failure and to the development of new treatments.
The Queen Mary University of London team applied an artificial intelligence (AI) technique to analyse the heart MRI images of 17,000 healthy UK Biobank volunteers. They found that genetic factors accounted for 22-39 per cent of variation in the size and function of the heart’s left ventricle, the organ’s main pumping chamber. Enlargement and reduced pumping function of the left ventricle can lead to heart failure.
The research, which was part-funded by the Wellcome Trust and the British Heart Foundation and published in the journal Circulation, suggests that genetic factors significantly influence the variation in heart structure and function. The team identified or confirmed 14 regions in the human genome associated with the size and function of the left ventricle – each containing genes that regulate the early development of heart chambers and the contraction of heart muscle.
Lead researcher Dr Nay Aung from the William Harvey Research Unit (WHRU) at Queen Mary University of London, said: “It is exciting that the state-of-the-art AI techniques now allow rapid and accurate measurement of the tens of thousands of heart MRI images required for genetic studies. The findings open up the possibility of earlier identification of those at risk of heart failure and of new targeted treatments. The genetic risk scores established from this study could be tested in future studies to create an integrated and personalised risk assessment tool for heart failure.”
Read more at Queen Mary University of London
Photo Credit: geralt via Pixabay