Oxygen threatens sustainable catalysts that use hydrogen to produce electricity in fuel cells. Researchers from Bochum and Marseille have developed a way to combat this.
Efficient catalysts for converting hydrogen into electricity in fuel cells for the energy transition are often based on expensive, rare metals such as platinum. The use of cheaper metals and biological components that work just as efficiently has so far shortened the service life of catalysts as they are sensitive to oxygen. A research team from Bochum and Marseille has succeeded in integrating such a catalyst within an extremely thin protective film of molecular building blocks that shields it from oxygen and thus makes its service life practically infinite while maintaining its ability to work efficiently. The team reports in the Journal of the American Chemical Society on 16 September 2019.
The researchers led by Professor Nicolas Plumeré from the Ruhr Explores Solvation (Resolv) Cluster of Excellence at Ruhr-Universität Bochum (RUB) worked on this study together with Dr. Vincent Fourmond and Dr. Christophe Léger from the Centre national de la recherche scientifique Marseille.
Read more at: Ruhr-University Bochum
Nicolas Plumeré, Darren Buesen and Li Huaiguang (from left). (Photo Credit: RUB, Marquard)