A key part of drilling and tapping new oil wells is the use of specialized cements to line the borehole and prevent collapse and leakage of the hole. To keep these cements from hardening too quickly before they penetrate to the deepest levels of the well, they are mixed with chemicals called retarders that slow down the setting process.
It’s been hard to study the way these retarders work, however, because the process happens at extreme pressures and temperatures that are hard to reproduce at the surface.
Now, researchers at MIT and elsewhere have developed new techniques for observing the setting process in microscopic detail, an advance that they say could lead to the development of new formulations specifically designed for the conditions of a given well location. This could go a long way toward addressing the problems of methane leakage and well collapse that can occur with today’s formulations.
Their findings appear in the journal Cement and Concrete Research, in a paper by MIT Professor Oral Buyukozturk, MIT research scientist Kunal Kupwade-Patil, and eight others at the Aramco Research Center in Texas and at Oak Ridge National Laboratory (ORNL) in Tennessee.
Read more at Massachusetts Institute of Technology
Image Credit: Massachusetts Institute of Technology