Consider the range of possibilities from 4D printed materials that transform underwater, or fibers that snap into a particular shape when they are cut out of a flat panel, or coaxing shifting sands in the ocean into building artificial islands, and you will have some idea of the breadth of research that Skylar Tibbits, MIT associate professor of design research in the Department of Architecture, pursues.
Tibbits’ Self-Assembly Lab at MIT demonstrated, through studies in a water tank simulating ocean conditions, that specific geometries could generate self-organizing sand bars and beaches. To test this approach in the real world, the lab is currently conducting field experiments based on their lab work with a group called Invena in the Maldives — a chain of islands, or atolls, in the Indian Ocean, many of which are at risk of erosion and, at worst, submersion from rising sea levels.
Wind and waves naturally build up sand bars in the ocean environment and just as naturally sweep them away. The idea of the Maldives project is to harness the power of waves and their interaction with specifically placed underwater bladders to promote sand accumulation where it is most needed to protect shorefronts from flooding, rather than building land-based barriers that are inevitably worn away or overwhelmed.
Read more at Massachusetts Institute of Technology
Image: The Maldives, a chain of islands in the Indian Ocean, are at risk of erosion and, at worst, submersion from rising sea levels. MIT's Skylar Tibbits is conducting field experiments with a group called Invena in the Maldives to harness the power of waves with underwater bladders to promote sand accumulation where it is most needed to protect shorelines from flooding. CREDIT: Self-Assembly Lab at MIT and Invena