A parasitic plant has found a way to circumvent an evolutionary arms race with the host plants from which it steals nutrients, allowing the parasite to thrive on a variety of agriculturally important plants. The parasite dodder, an agricultural pest found on every continent, sends genetic material into its host to shut down host defense genes.
According to a new study by researchers at Penn State, dodder targets host genes that are evolutionarily conserved and sends many slightly different versions of its genetic weaponry to ensure effectiveness. This strategy, described in a paper appearing online in the journal eLife on Dec. 17, restricts the host’s ability to respond.
Instead of making its own energy through photosynthesis, dodder wraps itself around a host plant, using special structures to siphon off water and nutrients. Dodder can parasitize a variety of species, including some of agricultural importance like tomatoes, and its dense vine-like structure can interfere with harvesting machinery. The research team, led by Penn State Professor of Biology Michael Axtell, previously determined that dodder sends microRNAs — short segments of nucleic acids whose sequence matches a segment of a host gene — into its host. Binding to the host’s protein-coding messenger RNAs prevents host proteins from being made.
“If this process were detrimental to the host plant, we would expect the targeted host genes to change over time, due to natural selection or even due to chance,” said Axtell. “This kind of process often leads to what we call an evolutionary arms race, where host and parasite alternate changing the sequence of their genes slightly in order to up the ante. We wanted to know if this was actually the case.”
Read more at Penn State
Image: Dodder can parasitize a variety of plant species, including some of agricultural importance, like tomatoes. In addition to reducing yield, its dense vine-like structure can interfere with harvesting machinery. (Credit: Claude dePamphilis, Penn State)