The herbicide Roundup is the most widely used agricultural chemical in history. But over the past two decades, a growing number of weed species have evolved resistance to Roundup’s active ingredient, glyphosate, reducing the product’s dominance somewhat.
Research on the genetic basis of glyphosate resistance has focused largely on target-site resistance, which involves mutations to the single gene that encodes the plant protein disrupted by the herbicide.
Much less attention has been paid to nontarget-site glyphosate resistance, which involves identifying other genes that have mutated in ways that confer resistance to Roundup.
In a study published online Feb. 3 in the journal PLOS Genetics, a team led by University of Michigan plant ecological geneticist Regina Baucom used genome-wide scans to identify nontarget-site glyphosate resistance in the common morning glory, an annual vine that is a noxious agricultural weed.
Read more at University of Michigan
Photo Credit: Capri23auto via Pixabay