A Rutgers-led team has developed a tool to monitor influenza A virus mutations in real time, which could help virologists learn how to stop viruses from replicating.
The gold nanoparticle-based probe measures viral RNA in live influenza A cells, according to a study in The Journal of Physical Chemistry C. It is the first time in virology that experts have used imaging tools with gold nanoparticles to monitor mutations in influenza, with unparalleled sensitivity.
“Our probe will provide important insight on the cellular features that lead a cell to produce abnormally high numbers of viral offspring and on possible conditions that favor stopping viral replication,” said senior author Laura Fabris, an associate professor in the Department of Materials Science and Engineering in the School of Engineering at Rutgers University–New Brunswick.
Viral infections are a leading cause of illness and deaths. The new coronavirus, for example, has led to more than 24,000 confirmed cases globally, including more than 3,200 severe ones and nearly 500 deaths as of Feb. 5, according to a World Health Organization report.
Read more at Rutgers University
Image: An influenza virus binds to receptors on a respiratory tract cell, allowing the virus to enter and infect the cell. CREDIT: U.S. Centers for Disease Control and Prevention