It takes a lot of fuel to launch something into space. Sending NASA’s Space Shuttle into orbit required more than 3.5 million pounds of fuel, which is about 15 times heavier than a blue whale.
But a new type of engine — called a rotating detonation engine — promises to make rockets not only more fuel-efficient but also more lightweight and less complicated to construct. There’s just one problem: Right now this engine is too unpredictable to be used in an actual rocket.
Researchers at the University of Washington have developed a mathematical model that describes how these engines work. With this information, engineers can, for the first time, develop tests to improve these engines and make them more stable. The team published these findings Jan. 10 in Physical Review E.
“The rotating detonation engine field is still in its infancy. We have tons of data about these engines, but we don’t understand what is going on,” said lead author James Koch, a UW doctoral student in aeronautics and astronautics. “I tried to recast our results by looking at pattern formations instead of asking an engineering question — such as how to get the highest performing engine — and then boom, it turned out that it works.”
Read more at University of Washington
Image: The researchers first developed an experimental rotating detonation engine (shown here) where they could control different parameters, such as the size of the gap between the cylinders. The feed lines (right) direct the propellant flow into the engine. On the inside, there is another cylinder concentric to the outside piece. Sensors sticking out of the top of the engine (left) measure pressure along the length of the cylinder. The camera would be on the left-hand side, looking from the back end of the engine. (Credit: James Koch/University of Washington)