Graphene Flagship researchers at the University of Rome Tor Vergata, the Italian Institute of Technology (IIT) and its spin-off, Graphene Flagship Associate Member BeDimensional, in cooperation with ENEA have successfully combined graphene with tandem perovskite-silicon solar cells to achieve efficiencies of up to 26.3%. Moreover, they envisioned a new manufacturing method that, thanks to the versatility of graphene, allows to reduce production costs and could lead to the production of large-area solar panels. Graphene-based tandem solar cells almost double the efficiency of pure silicon.
Laws of physics limit the maximum efficiency of silicon solar cells to 32%. For that reason, scientists have spent decades trying to come up with other alternatives, such as III-V and perovskites. However, the latter present several manufacturing challenges, and scaling up the production of solar panels is a key step towards success. With 'tandem cells', scientists had previously combined the advantages of both silicon and perovskites – however stability, efficiency and large-scale manufacturing still seemed like a far-fledged dream.
But then graphene came into play – and it could be a game changer. Graphene Flagship researchers identified its potential for energy harvesting, and in fact have dedicated two different industry-oriented 'Spearhead Projects' to dig into the possibilities of graphene-based solar cells. This new paper published in Joule – a reference journal in the field of energy research – is yet another proof that graphene and related layered materials will enable the commercialisation of more efficient and cost-effective large area solar panels.
Read more at Graphene Flagship