Ten years ago this month, the blowout and explosion aboard the Deepwater Horizon (DWH) oil rig killed 11 people and caused hundreds of millions of gallons of oil and natural gas to begin pouring into the Gulf of Mexico, a spill that eventually became the largest marine spill in U.S. history. In 2016, a federal district judge approved a $21 billion settlement with the companies involved—the largest settlement in U.S. history for damage done to natural resources—that included nearly $9 billion for the restoration of natural resources and the services they provide.
One result of this disaster was a substantial increase in the amount of research focused on oil spill science. Approximately 1 month after the spill began, for example, BP committed to providing an unprecedented $500 million over 10 years to fund independent research on the impacts of the spill. These funds established the Gulf of Mexico Research Initiative (GoMRI), which has supported a diverse array of research projects since 2010.
With this level of sustained and directed funding, the number of peer-reviewed papers published on oil spill science skyrocketed. A notable breakthrough that arose from this new body of research is that we now have a better grasp on how oil behaves, physically and chemically, once it enters the environment. In particular, the role of sunlight in photooxidizing floating surface oil, long discounted or overlooked, has taken on new precedence, and researchers now agree this role must be better accounted for in oil spill assessments and models.
Read more at Eos
Image: An aircraft releases chemical dispersant on 5 May 2010 over oil floating on the surface of the Gulf of Mexico that was spilled during the Deepwater Horizon disaster. Credit: U.S. Coast Guard photo by Petty Officer 3rd Class Stephen Lehmann