Astronomers using several telescopes at NOIRLab, including the Southern Astrophysical Research (SOAR) Telescope, have obtained critical data on a particular type of exploding star that produces copious amounts of calcium. The calcium produced in this unique type of supernova explosion is the same calcium found in our bones and teeth and these events account for up to half of the calcium found in the Universe.
Thanks to detailed observations using the SOAR Telescope, located on Cerro Pachón in Chile, and a host of telescopes around the world and in space [1], astronomers have been able to probe the inner workings of a special type of supernova explosion. These particular explosions, from compact stars that lose copious amounts of mass late in their lives, appear to create the element calcium in their last dying gasps — and it is dispersed by the explosion throughout galaxies like the Milky Way. SOAR is a facility of Cerro Tololo Inter-American Observatory (CTIO), a Program of NSF’s NOIRLab.
“Most massive stars create small amounts of calcium during their lifetimes, but events like SN 2019ehk appear to be responsible for producing vast quantities of calcium and in the process of exploding disperse it through interstellar space within galaxies. Ultimately this calcium makes its way into forming planetary systems,” according to Régis Cartier, an astronomer at NOIRLab and a member of the research team, “…and into our bodies in the case of our Earth!”
Read more at: Association of Universities for Research in Astronomy (AURA)
Artist's interpretation (without labels) of the calcium-rich supernova 2019ehk. Shown in orange is the calcium-rich material created in the explosion. Purple coloring represents gas shed by the star right before the explosion, which then produced bright X-ray emission when the material collided with the supernova shockwave. (Photo Credit: A. M. Geller/Northwestern University/CTIO/SOAR/NOIRLab/NSF/AURA)