Scientists have tracked a ‘boomerang’ earthquake in the ocean for the first time, providing clues about how they could cause devastation on land.
Earthquakes occur when rocks suddenly break on a fault – a boundary between two blocks or plates. During large earthquakes, the breaking of rock can spread down the fault line. Now, an international team of researchers have recorded a ‘boomerang’ earthquake, where the rupture initially spreads away from initial break but then turns and runs back the other way at higher speeds.
The strength and duration of rupture along a fault influences the among of ground shaking on the surface, which can damage buildings or create tsunamis. Ultimately, knowing the mechanisms of how faults rupture and the physics involved will help researchers make better models and predictions of future earthquakes, and could inform earthquake early-warning systems.
The team, led by scientists from the University of Southampton and Imperial College London, report their results today in Nature Geoscience.
Read more at Imperial College London
Image: Reconstructed image of the fracture zone. (Credit: Hicks et al)