Scripps Research chemists Hans Renata, PhD, and Alexander Adibekian, PhD, have discovered a way to efficiently create a synthetic version of a valuable natural compound called cepafungin I, which has shown promise as an anti-cancer agent.
Through this, they were able to understand how the bacterial secretion is able to block a piece of molecular machinery known as a proteasome—a strategy that many existing cancer medications use to destroy tumor cells. They found that cepafungin I bound to not one but two places on the proteasome, enacting a powerful result. Their report appears in the journal Cell Chemical Biology.
“Because cepafungin I is able to engage the proteasome in two ways, it allows for amplification of its effect,” Renata says. “We showed that this compound elicits many similar downstream biological responses as the FDA-approved chemotherapy bortezomib, while also having certain qualities that may translate into fewer unwanted side effects for patients.”
Recreating nature
Cepafungin I first intrigued researchers because of its usefulness as an antifungal substance, and later as a promising anti-cancer agent. It kills cells by acting on the proteasome, which is responsible for clearing away the “garbage” produced by cells. When the proteasome’s function is blocked, cells are overcome with their waste and die.
Read more at Scripps Research Institute
Image by Arek Socha from Pixabay