New biomaterials developed at the University of Bayreuth eliminate risk of infection and facilitate healing processes. A research team led by Prof. Dr. Thomas Scheibel has succeeded in combining these material properties which are highly relevant to biomedicine. These nanostructured materials are based on spider silk proteins. They prevent colonization by bacteria and fungi, but at the same time proactively assist in the regeneration of human tissue. They are therefore ideal for implants, wound dressings, prostheses, contact lenses, and other everyday aids. The scientists have presented their innovation in the journal "Materials Today".
It is a widely underestimated risk of infection: Microbes settling on the surfaces of objects indispensable in medical therapy or for quality of life generally. Gradually, they form a dense, often invisible biofilm that cannot be easily removed, even by cleaning agents, and which often is resistant against antibiotics and antimycotics. Bacteria and fungi can then migrate into the adjacent tissue of the organism. As a result, they not only interfere with various processes of healing, but can even cause life-threatening infections.
With a novel research approach, University of Bayreuth scientists have now found a solution to this problem. Using biotechnologically produced spider silk proteins, they have developed a material that prevents the adhesion of pathogenic microbes. Even streptococci, resistant to multiple antibacterial agents (MRSA), have no chance of settling on the material surface. Biofilms growing on medical instruments, sports equipment, contact lenses, prostheses, and other everyday objects may therefore soon be history.
Read more at Universität Bayreuth
Photo Credit: mac231 via Pixabay