As wildfires rage across much of the American West, researchers at Stanford have used CAT scanners, the same instruments used in medicine to peer inside the human body, to understand the process of smoldering – the state of burning without flame that often leads to fire. They then folded this deeper understanding of burning into computer models to predict where wildfires might strike next. These models could help firefighters allocate precious resources, reduce the loss of property and help save lives, the researchers say.
“For wildfire risk assessment or if you’re a firefighter, what you need is an accurate prediction about how fast the local fuel – the trees and plants nearby – will burn. We’ve analyzed this fuel in a new way that allows us to do just that,” said Matthias Ihme, a professor of mechanical engineering and the senior author of the team’s recent paper in the Proceedings of the Combustion Institute.
To the untrained eye, smoldering may appear benign, but it’s responsible for consuming more than half of the plant matter burned in wildfires. Smoldering logs can seethe for days and ignite anew, while glowing embers, carried aloft by hot updrafts, can transport wildfires to untouched areas in a flash.
Continue reading at Stanford University.
Image via Emeric Stephane Boigne.