More than two billion people worldwide suffer from micronutrient malnutrition due to deficiencies in minerals and vitamins. Poor people in developing countries are most affected, as their diets are typically dominated by starchy staple foods, which are inexpensive sources of calories but contain low amounts of micronutrients. In a new Perspective article, an international team of scientists, involving the University of Göttingen, explains how plant genetic engineering can help to sustainably address micronutrient malnutrition. The article was published in Nature Communications.
Micronutrient malnutrition leads to severe health problems. For instance, vitamin A and zinc deficiency are leading risk factors for child mortality. Iron and folate deficiency contribute to anemia and physical and cognitive development problems. Often, the people affected are not aware of their nutritional deficiencies, which is why the term ‘hidden hunger’ is also used. The long-term goal is that all people are aware of healthy nutrition and have sufficient income to afford a balanced diet all year round. However, more targeted interventions are required in the short and medium term.
One intervention is to breed staple food crops for higher micronutrient contents, also known as ‘biofortification’. Over the last 20 years, international agricultural research centres have developed biofortified crops using conventional breeding methods, including sweet potato and maize with vitamin A, as well as wheat and rice with higher zinc content. These crops were successfully released in various developing countries with proven nutrition and health benefits. However, conventional breeding approaches have certain limitations.
Read more at: University of Gottingen
Poor people's diets are often dominated by staple foods. Rice cultivation in Indonesia. (Photo Credit: M Qaim)