Forecasts predicting where plants and animals will inhabit over time rely primarily on information about their current climate associations, but that only plays a partial role.
Under climate change, there’s a growing interest in assessing whether trees and other species can keep pace with changing temperatures and rainfall, shifting where they are found, also known as their ranges, to track their suitable climates. To test this, a University of Maine-led research team studied the current ranges of hundreds of North American trees and shrubs, assessing the degree to which species are growing in all of the places that are climatically suitable. Researchers found evidence of widespread “underfilling” of these potential climatic habitats — only 50% on average — which could mean that trees already have disadvantage as the world continues to warm.
Benjamin Seliger, a then UMaine Ph.D. student with the Climate Change Institute, spearheaded the study with his doctoral adviser, Jacquelyn Gill, a UMaine associate professor of paleoecology and plant ecology. Brain McGill, a UMaine professor of biological sciences, and Jens-Christian Svenning, a macroecologist and biogeographer from Aarhus University in Denmark also contributed.
The team used species distribution models to assess the degree to which 447 North American trees’ and shrubs’ “fill” their potential climatic ranges by comparing regions that are climatically suitable, known as potential ranges, against where trees are actually found, or their realized ranges.
Read more at University of Maine
Photo Credit: Gennaro_Leonardi via Pixabay