Not only does the new nature-inspired material reduce reliance on crude oil products, but its properties can also be easily controlled to make the material flexible or crystalline.
The researchers, from the University’s Centre for Sustainable and Circular Technologies, report the polymer, from the polyether family, has a variety of applications, including as a building block for polyurethane, used in mattresses and shoe soles; as a bio-derived alternative to polyethylene glycol, a chemical widely used in bio-medicine; or to polyethylene oxide, sometimes used as electrolyte in batteries.
The team says additional functionality could be added to this versatile polymer by binding other chemical groups such as fluorescent probes or dyes to the sugar molecule, for biological or chemical sensing applications.
Read more at University of Bath
Image: The new polymer is made using xylose, a sugar found in wood. Credit: Leszek Kobusinski