When aboveground storage tanks fail during a storm and their toxic contents spread, the threat to human health can and probably will flow downwind of the immediate area.
Rice University engineers have developed a model to quantify what could happen when a hurricane or other natural disaster causes such damage based on data gathered from the Houston Ship Channel, the largest petrochemical complex in the United States, during and after two hurricanes, Ike in 2008 and Harvey in 2017.
Pollutants like toxic organic chemicals evaporate from spills and can be carried a long way from the site by the wind, depending on the storm’s characteristics.
The computational model, according to atmospheric scientist Rob Griffin of Rice’s Brown School of Engineering, uses real data from the two storms as a proof of concept. The model is available upon request to help researchers predict the “what if” consequences of future storms that threaten storage tanks or chemical spills in general.
Read more at: Rice University
A Rice University model shows the predicted atmospheric concentration distribution in parts per billion of a downwind diesel plume six hours after Hurricane Harvey. Rice engineers modeled the hypothetical threats from toxins released when oil and chemical tankers in the Houston Ship Channel fail during a storm. (Photo Credit: Rice University)