The Venus flytrap (Dionaea muscipula) is a carnivorous plant that encloses its prey using modified leaves as a trap. During this process, electrical signals known as action potentials trigger the closure of the leaf lobes. An interdisciplinary team of scientists has now shown that these electrical signals generate measurable magnetic fields. Using atomic magnetometers, it proved possible to record this biomagnetism. "You could say the investigation is a little like performing an MRI scan in humans," said physicist Anne Fabricant. "The problem is that the magnetic signals in plants are very weak, which explains why it was extremely difficult to measure them with the help of older technologies."
We know that in the human brain voltage changes in certain regions result from concerted electrical activity that travels through nerve cells in the form of action potentials. Techniques such as electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance imaging (MRI) can be used to record these activities and noninvasively diagnose disorders. When plants are stimulated, they also generate electrical signals, which can travel through a cellular network analogous to the human and animal nervous system.
Read more at: Johannes Gutenberg Universitaet Mainz
Measuring magnetic signals generated by a Venus flytrap (photo collage) (Photo Credit: photo/©: Anne Fabricant)