A team of Russian scientists from NUST MISIS, Tomsk Polytechnic University (TPU) and Boreskov Institute of Catalysis has suggested a new approach to modifying the combustion behavior of coal. The addition of copper salts reduces the content of unburnt carbon in ash residue by 3.1 times and CO content in the gaseous combustion products by 40%, the scientists found. The research was published in Fuel Processing Technology.

According to the International Energy Agency (IEA), coal is the predominant energy resource used as the primary fuel for power generation. According to reports, coal supplied over one-third of global electricity generation in 2020. Experts believe that despite the generally accepted energy policy aimed at reducing the share of coal usage and switching to renewable energy sources, coal, as the main type of fuel in the world, will most likely still occupy a leading position in power generation in the coming years. However, the widespread use of coal is limited by a number of problems, such as incomplete combustion of fuel and concomitant formation of toxic gases. Taking this into account, development of technologies aiming at more effective and environmentally friendly coal thermal conversion is a priority task for the coal-fired power generation industry. One of the possible solutions to improve the coal-burning efficiency is the use of catalytically active agents, such as oxides of various metals and their precursors (salts based on nitrates, sulfates, acetates, and carbonates), to intensify the combustion process.

Read more at: National University of Science and Technology Misis

Alexander Gromov, the NUST MISIS team lead and head of MISIS Catalysis Lab. (Photo Credit: Sergey Gnuskov/NUST MISIS)