Geoscientists at Sandia National Laboratories used 3D-printed rocks and an advanced, large-scale computer model of past earthquakes to understand and prevent earthquakes triggered by energy exploration.
Injecting water underground after unconventional oil and gas extraction, commonly known as fracking, geothermal energy stimulation and carbon dioxide sequestration all can trigger earthquakes. Of course, energy companies do their due diligence to check for faults — breaks in the earth’s upper crust that are prone to earthquakes — but sometimes earthquakes, even swarms of earthquakes, strike unexpectedly.
Sandia geoscientists studied how pressure and stress from injecting water can transfer through pores in rocks down to fault lines, including previously hidden ones. They also crushed rocks with specially engineered weak points to hear the sound of different types of fault failures, which will aid in early detection of an induced earthquake.
3D-printing variability provides fundamental structural information
To study different types of fault failures, and their warning signs, Sandia geoscientist Hongkyu Yoon needed a bunch of rocks that would fracture the same way each time he applied pressure — pressure not unlike the pressure caused by injecting water underground.
Read more at DOE/Sandia National Laboratories
Image: Sandia National Laboratories geoscientist Hongkyu Yoon holds a fractured 3D-printed rock. Hongkyu squeezed 3D-printed rocks until they cracked and listened to the sound of the rocks breaking to be able to identify early signs of earthquakes. (Credit: Photo by Rebecca Gustaf/Sandia National Laboratories)