Sunlight, air and water are all that cyanobacteria (more commonly known as blue-green algae), true algae and plants need for the production of organic (i.e. carbon-based) compounds and molecular oxygen by means of photosynthesis. Photosynthesis is the major source of building blocks for organisms on Earth. However, too much sunlight reduces the efficiency of photosynthesis because it damages the ‘solar panels’, i.e. the photosynthetic machineries of cyanobacteria, algae and plants.
A team of researchers led by LMU biologist Dario Leister has now used “artificial laboratory evolution” to identify mutations that enable unicellular cyanobacteria to tolerate high levels of light. The long-term aim of the project is to find ways of endowing crop plants with the ability to cope with the effects of climate change.
The cyanobacteria used in the study were derived from a strain of cells that were used to grow at low levels of light. “To enable them to emerge from the shadows, so to speak, we exposed these cells to successively higher light intensities,” says Leister. In an evolutionary process based on mutation and selection, the cells adapted to the progressive alteration in lighting conditions – and because each cell divides every few hours, the adaptation process proceeded at a far higher rate than would have been possible with green plants.
Continue reading at Ludwig-Maximilians-Universität München
Image via Ludwig-Maximilians-Universität München