Produced in a sustainable way, synthetic fuels contribute to switching mobility to renewable energy and to achieving the climate goals in road traffic. In Empa's mobility demonstrator, move, researchers are investigating the production of synthetic methane from an energy, technical and economic perspective – a project with global potential.
Mobility analyses show: Only a small proportion of all vehicles are responsible for the majority of the kilometers driven. We are talking above all about long-distance trucks that transport goods all over Europe. If these continue to be fueled with fossil energy, it will hardly be possible to sufficiently reduce CO2 emissions in road traffic. Synthetic fuels can make a significant contribution to such applications.
With electric mobility, hydrogen mobility and synthetic fuels, Empa's future mobility demonstrator, "move", is investigating three paths for CO2 reduction in road traffic against the background of a rapidly changing energy system. "All these concepts have advantages and drawbacks in terms of energy, operation and economics. In order to use them in a smart way, we need a deeper understanding of the overall system," says Christian Bach, Head of Empa's Automotive Powertrain Technologies lab. "Together with our 'move' partners, we are working to develop knowledge that can be put into practice."
Read more at: Swiss Federal Laboratories for Materials Science and Technology
By 2030, the retailer Lidl Switzerland will switch from fossil natural gas to liquefied renewable gas to operate its trucks. (Photo Credit: Lidl Switzerland)