Hurricanes are powerful weather events born in the open sea. Fueled by moisture from the warm ocean, hurricanes can intensify in strength, move vast distances across the water, and ultimately unleash their destruction upon land. But what happens to hurricanes after they’ve made landfall remains an open question.
Now, a recent study in Physical Review Fluids has used simulations to explore the fate of landfalling hurricanes. The scientists found that after landfall, the warm, dynamic heart of a hurricane is replaced by a growing cold core – an unexpected finding that could help forecasters predict the level of extreme weather that communities farther inland may face.
“Generally, if a hurricane hits land, it weakens and dies,” said Professor Pinaki Chakraborty, senior author and head of the Fluid Mechanics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST). “But sometimes, a hurricane can intensify again deep inland, creating a lot of destruction, like flooding, in communities far away from the coast. So, predicting the course that a hurricane will take is crucial.”
Read More: Okinawa Institute of Science and Technology Graduate University
Once a hurricane moves over land, it loses its moisture supply so the air contains less moisture. Air must rise further before it reaches a temperature where it can no longer hold the level of water vapor. The vapor therefore condenses and releases heat as a higher point, shrinking the warm core to the upper half of the hurricane, while the rising air forms a cold core at the bottom. Professor Pinaki Chakraborty and Dr. Lin Li studied the thermodynamics of landfalling hurricanes as part of a study in Physical Review Fluids. (Photo Credit: OIST)