Carbon dioxide (CO2) emissions from human activities have risen drastically over the last century and a half and are seen as the primary cause of global warming and abnormal weather patterns. So, there has been considerable research focus, in a number of fields, on lowering our CO2 emissions and its atmospheric levels. One promising strategy is to chemically break down, or 'reduce,' CO2 using photocatalysts--compounds that absorb light energy and provide it to reactions, speeding them up. With this strategy, the solar powered reduction of CO2, where no other artificial source of energy is used, becomes possible, opening doors to a sustainable path to a sustainable future.
A team of scientists led by Drs. Shinji Kawasaki and Yosuke Ishii from Nagoya Institute of Technology, Japan, has been at the forefront of efforts to achieve efficient solar-energy-assisted CO2 reduction. Their recent breakthrough is published in Nature's Scientific Reports.
Their research began with the need to solve the limited applicability problem of silver iodate (AgIO3), a photocatalyst that has attracted considerable attention for being useful for the CO2 reduction reaction. The problem is that AgIO3 needs much higher energy than that which visible light can provide to function as an efficient photocatalyst; and visible light is the majority of solar radiation.
Read more at: Nagoyo Institute of Technology