The impact of El Nino on East Asian climate under a warmer climate will be dominated by the change in El Nino decaying pace, according to a new paper published by a research team based in the Institute of Atmospheric Physics, Chinese Academy of Sciences, China.
The western North Pacific anomalous anticyclone (WNPAC) is a low-level atmospheric circulation system, linking up El Nino events with East Asian -western Pacific summer climate. The WNPAC can persist from El Nino mature phase in boreal winter to the upcoming summer, bringing abundant moisture to enhance the precipitation over East Asia. How the WNPAC will change in the future concerns millions of people living in the East Asian -western Pacific region, but the future change in the WNPAC under global warming is highly uncertain across climate models.
The study, which appears in Journal of Climate online on 5th June, found that about 23% of the uncertainty in WNPAC projection is attributed to the El Nino amplitude change while the rest 77% is from non-amplitude change which is mainly related to the change in El Nino decaying pace, according to ZHOU Tianjun, the corresponding author of the paper.
ZHOU is a senior scientist at the Institute of Atmospheric Physics in the Chinese Academy of Sciences. He is also a professor at the University of Chinese Academy of Sciences (UCAS).
Read more at Institute of Atmospheric Physics, Chinese Academy of Sciences
Photo Credit: Free-Photos via Pixabay