An international research team has come up with an innovative method for metal recovery from industrial waste. The new method allows the simultaneous recovery of multiple metals from waste oxides in a single process. This novel route will lower the burden on waste storage facilities with significant contributions to the economic and environmental sustainability of industrial waste management. The study was published in Journal of Environmental Management. This work is the first in a series of studies aimed at developing cost-effective and environmentally sustainable solutions for industrial waste recycling.
Some of the major industries such as coal and biomass-based power generation, iron and steel sector, aluminium production, water treatment etc. are known to produce huge amounts of aluminium and iron oxides rich wastes, e.g., fly ash from combustion of coal and biomass, mill scales, red mud, biochar (the char coproduct from the thermochemical processing of biomass utilized as a soil amendment and/or carbon sequestration agent), water treatment residues. Produced in hundreds to billions of tonnes, these wastes cause immense disposal issues. Leaching of metals into atmosphere through improper disposal can result in serious environmental damage and adverse effects on humans. However, current waste management methods are economically unviable and environmentally unsustainable.
Read more at National University of Science and Technology MISIS
Image: Deputy Head of the Department of Functional Nanosystems and High-Temperature Materials Yuri Konyukhov with a lab employee. (Credit: Sergey Gnuskov/NUST MISIS)