Ecosystems provide multiple services for humans. However, these services depend on basic ecosystem functions which are shaped by natural conditions like climate and species composition, and human interventions. A large international research team, led by the Max Planck Institute for Biogeochemistry (MPI BGC), and the German Centre for Integrative Biodiversity Research (iDiv), identified three key indicators that together summarise the integrative function of terrestrial ecosystems: The first is the capacity to maximise primary productivity, the second is the efficiency of using water, and the third is the efficiency of using carbon. The monitoring of these key indicators will allow a description of ecosystem function that shapes the ability to adapt, survive and thrive in response to climatic and environmental changes. The study was recently published in the journal Nature.

Ecosystems on Earth’s land surface support multiple functions and services that are critical for society, like biomass production, vegetation’s efficiency of using sunlight and water, water retention and climate regulation, and ultimately food security. Climate and environmental changes, as well as anthropogenic impacts, are continuously threatening the provision of these functions. To understand how terrestrial ecosystems will respond to this threat, it is crucial to know which functions are essential to obtain a good representation of the ecosystems’ overall well-being and functioning. This is particularly difficult since ecosystems are rather complex in terms of their structure and their responses to environmental changes.

Read more at: German Centre for Integrative Biodiversity Research

The experimental site in Torgnon (Italy), a grassland located at about 2100 m in the Western Italian Alps, and belonging to the Integrated Carbon Observation System (ICOS) and FLUXNET network. (Photo Credit: Marta Galvagno)