The development of wind energy, a renewable, emissions-free energy source, is widely acknowledged as an imperative to mitigate greenhouse gas emissions and the impacts of climate change. In recent years, much progress in this realm has been made as the cost of developing wind energy has declined significantly with emerging technologies and incentive policies.
Nevertheless, wind farms, generally located in areas with robust wind resources and typically consisting of multiple turbines that convert wind into clean electricity, can be made more efficient. In Journal of Renewable and Sustainable Energy, by AIP Publishing, researchers from China and the United States examine diurnal and seasonal patterns of wind speeds and their impact on the adequacy of energy production.
“In wind farm planning, decision-makers need to select an appropriate site for wind farm installation,” said co-author Shuwei Miao, from Three Gorges University in Yichang, China. “We developed a seasonal adequacy assessment procedure using historical wind speed data, wind turbine parameters, system peak load, and other important factors that can help inform decisions on wind farm siting and operation.”
Using a two-phase simulation model to simulate diurnal and seasonal wind speed variations, the researchers justify the accuracy of their results by comparing them to actual data collected from a wind site in North Dakota. The results helped them develop the seasonal adequacy assessment procedure.
Read more at American Institute of Physics
Photo Credit: Nicolae_Balt via Pixabay