Reducing the world’s reliance on petroleum and natural gas is a worthy goal, one that could help us achieve a smaller carbon footprint. It will, however, mean rethinking how we create many of the products in our everyday lives.
Chemical manufacturing, the practice of taking raw materials and turning them into products using chemical processes, is an $800 billion industry that supports over 6 million jobs in the United States each year. It contributes to the production of everything from food, buildings and clothing to items found in industries such as health care, electronics and transportation.
Traditional chemical manufacturing relies on non-renewable fossil energy sources for power and raw materials. A more sustainable option gaining steam is the use of electrolyzers, devices that instead use electricity to convert raw materials like carbon dioxide (CO2) into useful molecules for chemicals and products.
One hurdle that keeps promising CO2 electrolyzer technologies in academic laboratories rather than being scaled for industrial use — where they could make a dent in our carbon dioxide emission problem — is that the critical materials needed for the job, including membranes and catalysts, aren’t yet durable or efficient enough to operate over long periods of time.
University of Delaware engineers Feng Jiao, Yushan Yan and Koffi Pierre Yao and colleagues at Louisiana State University (LSU) are collaborating to overcome these challenges.
Read more at: University of Delaware
A new collaboration between UD engineers and colleagues at LSU seeks to transform chemical manufacturing (Photo Credit: Illustration by Jeffrey C. Chase)